Analysis of satellite data on NO₂ in urban environments: case study of the city of Madrid

Authors

  • Carlos Morillas López PhD, Universidad Politécnica de Madrid

DOI:

https://doi.org/10.59192/mapping.463

Keywords:

Nitrogen Dioxide, Air quality, Remote sensing, Urban environments, TROPOMI, Madrid

Abstract

This study analyzes the use of satellite data from the TROPOMI sensor aboard Sentinel-5P to evaluate nitrogen dioxide (NO₂) levels in urban environments, focusing on the Community of Madrid during 2023. Tropospheric concentrations measured by the satellite were compared with in situ data from ground-based air quality stations, showing a strong correlation (r=0.75), which improves in exclusively urban areas (r=0.79). The results reveal seasonal patterns, with higher concentrations in winter due to meteorological phenomena such as thermal inversions and heating emissions, and lower levels in summer associated with vacation periods. Differences were also identified between weekdays and weekends, reflecting the influence of traffic as the main emission source. This equivalence has also been used to assess the effectiveness of mitigation policies in the city. Although satellite data cannot fully replace in situ measurements, their integration with advanced techniques such as machine learning offers new opportunities for air quality monitoring and management. This work underscores the need to continue developing models that combine both sources to optimize their applicability in different regions.

Downloads

Download data is not yet available.

Author Biography

Carlos Morillas López, PhD, Universidad Politécnica de Madrid

Ingeniero de la Energía por la Universidad Politécnica de Madrid (UPM) y estudiante de doctorado en Ingeniería Geomática desde marzo de 2023. Experto en huella de carbono e inventarios de gases de efecto invernadero. Colaborador del Observatorio de Acción Climática.

References

Ayuntamiento de Madrid, 2024. Datos de calidad del aire desde 2001 [WWW Document]. URL https:// datos.madrid.es/portal/site/egob/menuitem. c05c1f754a33a9fbe4b2e4b284f1a5a0/?vgnextoid=aecb88a7e2b73410VgnVCM2000000c205a0aRCRD&vgnextchannel=374512b9ace9f310VgnVCM- 100000171f5a0aRCRD

Buzikov, S. V, Matushkin, O.P., Jonson, J.E., Borken-Kleefeld, J., Simpson, D., Nyíri, A., Posch, M., Heyes, C., 2017. LETTER • OPEN ACCESS Impact of doping alumina nanoparticles on spray characteristics of diesel-biodiesel fuel blends Mukul Tomar and Naveen Kumar-Development of a bi-fuel power supply system for a diesel engine Impact of excess NO x emissions from diesel cars on air quality, public health and eutrophication in Europe. Environ. Res. Lett 12, 94017. https://doi.org/10.1088/1748-9326/aa8850

Cedeno Jimenez, J.R., Brovelli, M.A., 2023. NO2 Concentration Estimation at Urban Ground Level by Integrating Sentinel 5P Data and ERA5 Using Machine Learning: The Milan (Italy) Case Study. Remote Sens.

https://doi.org/10.3390/RS15225400

Cedeno Jimenez, J.R., Pugliese Viloria, A. de J., Brovelli, M.A., 2023. Estimating Daily NO2 Ground Level Concentrations Using Sentinel-5P and Ground Sensor Meteorological Measurements. ISPRS Int. J. Geo-Information 2023, Vol. 12, Page 107 12, 107. https://doi. org/10.3390/IJGI12030107

Cersosimo, A., Serio, C., Masiello, G., 2020. TROPOMI NO2 Tropospheric Column Data: Regridding to 1 km Grid-Resolution and Assessment of their Consistency with In Situ Surface Observations. Remote Sens. 2020, Vol. 12, Page 2212 12, 2212. https://doi.org/10.3390/ RS12142212

Chan, K.L., Khorsandi, E., Liu, S., Baier, F., Valks, P., 2021. Estimation of Surface NO2 Concentrations over Germany from TROPOMI Satellite Observations Using a Machine Learning Method. Remote Sens. 2021, Vol. 13, Page 969 13, 969. https://doi.org/10.3390/ RS13050969

European Space Agency (ESA), 2024. Copernicus Data Space Ecosystem [WWW Document]. URL https:// dataspace.copernicus.eu/

Goldberg, D.L., Anenberg, S.C., Kerr, G.H., Mohegh, A., Lu, Z., Streets, D.G., 2021. TROPOMI NO2 in the United States: A Detailed Look at the Annual Averages, Weekly Cycles, Effects of Temperature, and Correlation With Surface NO2 Concentrations. Earth’s Futur. 9, e2020EF001665. https://doi.org/10.1029/2020EF001665

Google Earth Engine (GEE), 2018. Sentinel-5P OFFL NO2: Offline Nitrogen Dioxide. URL https://developers. google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_NO2 .

Griffin, D., Zhao, X., McLinden, C.A., Boersma, F., Bourassa, A., Dammers, E., Degenstein, D., Eskes, H., Fehr, L., Fioletov, V., Hayden, K., Kharol, S.K., Li, S.M., Makar, P., Martin, R. V., Mihele, C., Mittermeier, R.L., Krotkov, N., Sneep, M., Lamsal, L.N., Linden, M. ter, Geffen, J. van, Veefkind, P., Wolde, M., 2019. High-Resolution Mapping of Nitrogen Dioxide With TROPOMI: First Results and Validation Over the Canadian Oil Sands. Geophys. Res. Lett. 46, 1049–1060. https://doi.org/10.1029/2018GL081095

Health Effects Institute, 2024. State of Global Air Report 2024. URL https://www.stateofglobalair.org/resources/report/state-global-air-report-2024

Ialongo, I., Virta, H., Eskes, H., Hovila, J., Douros, J., 2020. Comparison of TROPOMI/Sentinel-5 Precursor NO2 observations with ground-based measurements in Helsinki. Atmos. Meas. Tech. 13, 205–218. https://doi. org/10.5194/AMT-13-205-2020

Jeong, U., Hong, H., 2021. Assessment of Tropospheric Concentrations of NO2 from the TROPOMI/Sentinel-5 Precursor for the Estimation of Long-Term Exposure to Surface NO2 over South Korea. Remote Sens. 2021, Vol. 13, Page 1877 13, 1877. https://doi.org/10.3390/ RS13101877

Kang, Y., Choi, H., Im, J., Park, S., Shin, M., Song, C.K., Kim, S., 2021. Estimation of surface-level NO2 and O3 concentrations using TROPOMI data and machine learning over East Asia. Environ. Pollut. 288. https:// doi.org/10.1016/J.ENVPOL.2021.117711

Khomenko, S., Cirach, M., Pereira-Barboza, E., Mueller, N., Barrera-Gómez, J., Rojas-Rueda, D., de Hoogh, K., Hoek, G., Nieuwenhuijsen, M., 2021. Premature mortality due to air pollution in European cities: a health impact assessment. Lancet Planet. Heal. 5, e121–e134. https://doi.org/10.1016/S2542-5196(20)30272-2

Lamsal, L.N., Martin, R. V., Parrish, D.D., Krotkov, N.A., 2013. Scaling relationship for NO2 pollution and urban population size: A satellite perspective. Environ. Sci. Technol. 47, 7855–7861. https://doi.org/10.1021/ ES400744G/ASSET/IMAGES/MEDIUM/ES-2013- 00744G_0003.GIF

McDuffie, E.E., Smith, S.J., O’Rourke, P., Tibrewal, K., Venkataraman, C., Marais, E.A., Zheng, B., Crippa, M., Brauer, M., Martin, R. V., 2020. A global anthropogenic emission inventory of atmospheric pollutants from sector- And fuel-specific sources (1970-2017): An application of the Community Emissions Data System (CEDS). Earth Syst. Sci. Data 12, 3413–3442. https://doi.org/10.5194/ESSD-12-3413-2020

Ministerio para la Transición Ecológica y el Reto Demográfico, 2024. Estaciones de calidad del aire. URL https://www.miteco.gob.es/es/cartografia-y-sig/ide/ descargas/calidad-y-evaluacion-ambiental/estaciones-de-calidad-del-aire.html

Ministerio para la Transición Ecológica y el Reto Demográfico, 2022. Evaluación de la calidad del aire en España.

Ministerios de la Presidencia Justicia y Relaciones con las Cortes (MPJRC), 2021. Ley 7/2021, de 20 de mayo, de cambio climático y transición energética.

Morillas, C., Alvarez, S., Pires, J.C.M., Garcia, A.J., Martinez, S., 2024. Impact of the implementation of Madrid’s low emission zone on NO2 concentration using Sentinel-5P/TROPOMI data. Atmos. Environ. 320, 120326. https://doi.org/10.1016/J.ATMOSENV.2024.120326

Nijkerk, D., Van, B., Peter, V., Doorn, V., Henselmans, R., Van Venrooy, B., Van Doorn, P., Draaisma, F., Hoogstrate, A., 2017. The TROPOMI Telescope. https://doi. org/10.1117/12.2309035 10564, 272–278. https://doi.org/10.1117/12.2309035

Organización Mundial de la Salud, 2021. WHO global air quality guidelines: particulate matter (‎PM2.5 and PM10)‎, ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. URL https://iris.who.int/handle/10665/345329.

Organización Mundial de la Salud, 2013. Review of evidence on health aspects of air pollution-REVIHAAP Project Technical Report.

Rudke, A.P., Martins, J.A., Hallak, R., Martins, L.D., de Almeida, D.S., Beal, A., Freitas, E.D., Andrade, M.F., Koutrakis, P., Albuquerque, T.T.A., 2023. Evaluating TROPOMI and MODIS performance to capture the dynamic of air pollution in São Paulo state: A case study during the COVID-19 outbreak. Remote Sens. Environ. 289, 113514. https://doi.org/10.1016/J.RSE.2023.113514

Shaw, S., Van Heyst, B., 2022. An Evaluation of Risk Ratios on Physical and Mental Health Correlations due to Increases in Ambient Nitrogen Oxide (NOx) Concentrations. Atmos. 2022, Vol. 13, Page 967 13, 967. https:// doi.org/10.3390/ATMOS13060967

Unión Europea, 2024. Directive (EU) 2024/2881. URL https://eur-lex.europa.eu/eli/dir/2024/2881/oj

Veefkind, J.P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., Claas, J., Eskes, H.J., de Haan, J.F., Kleipool, Q., van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B., Vink, R., Visser, H., Levelt, P.F., 2012. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 120, 70–83. https://doi.org/10.1016/J.RSE.2011.09.027

Zhu, Y., Zhan, Y., Wang, B., Li, Z., Qin, Y., Zhang, K., 2019. Spatiotemporally mapping of the relationship between NO2 pollution and urbanization for a megacity in Southwest China during 2005–2016. Chemosphere 220, 155–162. https://doi.org/10.1016/J.CHEMOSPHERE.2018.12.095

Published

2025-06-05

How to Cite

Morillas López, C. (2025). Analysis of satellite data on NO₂ in urban environments: case study of the city of Madrid. REVISTA INTERNACIONAL MAPPING, 34(217), 62–72. https://doi.org/10.59192/mapping.463

Issue

Section

Artículos Científicos