Analysis of satellite data on NO₂ in urban environments: case study of the city of Madrid
DOI:
https://doi.org/10.59192/mapping.463Keywords:
Nitrogen Dioxide, Air quality, Remote sensing, Urban environments, TROPOMI, MadridAbstract
This study analyzes the use of satellite data from the TROPOMI sensor aboard Sentinel-5P to evaluate nitrogen dioxide (NO₂) levels in urban environments, focusing on the Community of Madrid during 2023. Tropospheric concentrations measured by the satellite were compared with in situ data from ground-based air quality stations, showing a strong correlation (r=0.75), which improves in exclusively urban areas (r=0.79). The results reveal seasonal patterns, with higher concentrations in winter due to meteorological phenomena such as thermal inversions and heating emissions, and lower levels in summer associated with vacation periods. Differences were also identified between weekdays and weekends, reflecting the influence of traffic as the main emission source. This equivalence has also been used to assess the effectiveness of mitigation policies in the city. Although satellite data cannot fully replace in situ measurements, their integration with advanced techniques such as machine learning offers new opportunities for air quality monitoring and management. This work underscores the need to continue developing models that combine both sources to optimize their applicability in different regions.
Downloads
References
Ayuntamiento de Madrid, 2024. Datos de calidad del aire desde 2001 [WWW Document]. URL https:// datos.madrid.es/portal/site/egob/menuitem. c05c1f754a33a9fbe4b2e4b284f1a5a0/?vgnextoid=aecb88a7e2b73410VgnVCM2000000c205a0aRCRD&vgnextchannel=374512b9ace9f310VgnVCM- 100000171f5a0aRCRD
Buzikov, S. V, Matushkin, O.P., Jonson, J.E., Borken-Kleefeld, J., Simpson, D., Nyíri, A., Posch, M., Heyes, C., 2017. LETTER • OPEN ACCESS Impact of doping alumina nanoparticles on spray characteristics of diesel-biodiesel fuel blends Mukul Tomar and Naveen Kumar-Development of a bi-fuel power supply system for a diesel engine Impact of excess NO x emissions from diesel cars on air quality, public health and eutrophication in Europe. Environ. Res. Lett 12, 94017. https://doi.org/10.1088/1748-9326/aa8850
Cedeno Jimenez, J.R., Brovelli, M.A., 2023. NO2 Concentration Estimation at Urban Ground Level by Integrating Sentinel 5P Data and ERA5 Using Machine Learning: The Milan (Italy) Case Study. Remote Sens.
https://doi.org/10.3390/RS15225400
Cedeno Jimenez, J.R., Pugliese Viloria, A. de J., Brovelli, M.A., 2023. Estimating Daily NO2 Ground Level Concentrations Using Sentinel-5P and Ground Sensor Meteorological Measurements. ISPRS Int. J. Geo-Information 2023, Vol. 12, Page 107 12, 107. https://doi. org/10.3390/IJGI12030107
Cersosimo, A., Serio, C., Masiello, G., 2020. TROPOMI NO2 Tropospheric Column Data: Regridding to 1 km Grid-Resolution and Assessment of their Consistency with In Situ Surface Observations. Remote Sens. 2020, Vol. 12, Page 2212 12, 2212. https://doi.org/10.3390/ RS12142212
Chan, K.L., Khorsandi, E., Liu, S., Baier, F., Valks, P., 2021. Estimation of Surface NO2 Concentrations over Germany from TROPOMI Satellite Observations Using a Machine Learning Method. Remote Sens. 2021, Vol. 13, Page 969 13, 969. https://doi.org/10.3390/ RS13050969
European Space Agency (ESA), 2024. Copernicus Data Space Ecosystem [WWW Document]. URL https:// dataspace.copernicus.eu/
Goldberg, D.L., Anenberg, S.C., Kerr, G.H., Mohegh, A., Lu, Z., Streets, D.G., 2021. TROPOMI NO2 in the United States: A Detailed Look at the Annual Averages, Weekly Cycles, Effects of Temperature, and Correlation With Surface NO2 Concentrations. Earth’s Futur. 9, e2020EF001665. https://doi.org/10.1029/2020EF001665
Google Earth Engine (GEE), 2018. Sentinel-5P OFFL NO2: Offline Nitrogen Dioxide. URL https://developers. google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_NO2 .
Griffin, D., Zhao, X., McLinden, C.A., Boersma, F., Bourassa, A., Dammers, E., Degenstein, D., Eskes, H., Fehr, L., Fioletov, V., Hayden, K., Kharol, S.K., Li, S.M., Makar, P., Martin, R. V., Mihele, C., Mittermeier, R.L., Krotkov, N., Sneep, M., Lamsal, L.N., Linden, M. ter, Geffen, J. van, Veefkind, P., Wolde, M., 2019. High-Resolution Mapping of Nitrogen Dioxide With TROPOMI: First Results and Validation Over the Canadian Oil Sands. Geophys. Res. Lett. 46, 1049–1060. https://doi.org/10.1029/2018GL081095
Health Effects Institute, 2024. State of Global Air Report 2024. URL https://www.stateofglobalair.org/resources/report/state-global-air-report-2024
Ialongo, I., Virta, H., Eskes, H., Hovila, J., Douros, J., 2020. Comparison of TROPOMI/Sentinel-5 Precursor NO2 observations with ground-based measurements in Helsinki. Atmos. Meas. Tech. 13, 205–218. https://doi. org/10.5194/AMT-13-205-2020
Jeong, U., Hong, H., 2021. Assessment of Tropospheric Concentrations of NO2 from the TROPOMI/Sentinel-5 Precursor for the Estimation of Long-Term Exposure to Surface NO2 over South Korea. Remote Sens. 2021, Vol. 13, Page 1877 13, 1877. https://doi.org/10.3390/ RS13101877
Kang, Y., Choi, H., Im, J., Park, S., Shin, M., Song, C.K., Kim, S., 2021. Estimation of surface-level NO2 and O3 concentrations using TROPOMI data and machine learning over East Asia. Environ. Pollut. 288. https:// doi.org/10.1016/J.ENVPOL.2021.117711
Khomenko, S., Cirach, M., Pereira-Barboza, E., Mueller, N., Barrera-Gómez, J., Rojas-Rueda, D., de Hoogh, K., Hoek, G., Nieuwenhuijsen, M., 2021. Premature mortality due to air pollution in European cities: a health impact assessment. Lancet Planet. Heal. 5, e121–e134. https://doi.org/10.1016/S2542-5196(20)30272-2
Lamsal, L.N., Martin, R. V., Parrish, D.D., Krotkov, N.A., 2013. Scaling relationship for NO2 pollution and urban population size: A satellite perspective. Environ. Sci. Technol. 47, 7855–7861. https://doi.org/10.1021/ ES400744G/ASSET/IMAGES/MEDIUM/ES-2013- 00744G_0003.GIF
McDuffie, E.E., Smith, S.J., O’Rourke, P., Tibrewal, K., Venkataraman, C., Marais, E.A., Zheng, B., Crippa, M., Brauer, M., Martin, R. V., 2020. A global anthropogenic emission inventory of atmospheric pollutants from sector- And fuel-specific sources (1970-2017): An application of the Community Emissions Data System (CEDS). Earth Syst. Sci. Data 12, 3413–3442. https://doi.org/10.5194/ESSD-12-3413-2020
Ministerio para la Transición Ecológica y el Reto Demográfico, 2024. Estaciones de calidad del aire. URL https://www.miteco.gob.es/es/cartografia-y-sig/ide/ descargas/calidad-y-evaluacion-ambiental/estaciones-de-calidad-del-aire.html
Ministerio para la Transición Ecológica y el Reto Demográfico, 2022. Evaluación de la calidad del aire en España.
Ministerios de la Presidencia Justicia y Relaciones con las Cortes (MPJRC), 2021. Ley 7/2021, de 20 de mayo, de cambio climático y transición energética.
Morillas, C., Alvarez, S., Pires, J.C.M., Garcia, A.J., Martinez, S., 2024. Impact of the implementation of Madrid’s low emission zone on NO2 concentration using Sentinel-5P/TROPOMI data. Atmos. Environ. 320, 120326. https://doi.org/10.1016/J.ATMOSENV.2024.120326
Nijkerk, D., Van, B., Peter, V., Doorn, V., Henselmans, R., Van Venrooy, B., Van Doorn, P., Draaisma, F., Hoogstrate, A., 2017. The TROPOMI Telescope. https://doi. org/10.1117/12.2309035 10564, 272–278. https://doi.org/10.1117/12.2309035
Organización Mundial de la Salud, 2021. WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. URL https://iris.who.int/handle/10665/345329.
Organización Mundial de la Salud, 2013. Review of evidence on health aspects of air pollution-REVIHAAP Project Technical Report.
Rudke, A.P., Martins, J.A., Hallak, R., Martins, L.D., de Almeida, D.S., Beal, A., Freitas, E.D., Andrade, M.F., Koutrakis, P., Albuquerque, T.T.A., 2023. Evaluating TROPOMI and MODIS performance to capture the dynamic of air pollution in São Paulo state: A case study during the COVID-19 outbreak. Remote Sens. Environ. 289, 113514. https://doi.org/10.1016/J.RSE.2023.113514
Shaw, S., Van Heyst, B., 2022. An Evaluation of Risk Ratios on Physical and Mental Health Correlations due to Increases in Ambient Nitrogen Oxide (NOx) Concentrations. Atmos. 2022, Vol. 13, Page 967 13, 967. https:// doi.org/10.3390/ATMOS13060967
Unión Europea, 2024. Directive (EU) 2024/2881. URL https://eur-lex.europa.eu/eli/dir/2024/2881/oj
Veefkind, J.P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., Claas, J., Eskes, H.J., de Haan, J.F., Kleipool, Q., van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B., Vink, R., Visser, H., Levelt, P.F., 2012. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 120, 70–83. https://doi.org/10.1016/J.RSE.2011.09.027
Zhu, Y., Zhan, Y., Wang, B., Li, Z., Qin, Y., Zhang, K., 2019. Spatiotemporally mapping of the relationship between NO2 pollution and urbanization for a megacity in Southwest China during 2005–2016. Chemosphere 220, 155–162. https://doi.org/10.1016/J.CHEMOSPHERE.2018.12.095
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.