First steps towards an infrastructure for satellite imagery in IGN Spain using Open Data Cube and QGIS
DOI:
https://doi.org/10.59192/mapping.416Keywords:
Open Data Cube, Copernicus, FOSS4G, QGIS pluginAbstract
Since the launch of Sentinel 1 in April 2014, the European programme for Earth Observation Copernicus has become the most ambitious of its kind in history. The humongous amount of generated satellite data and its heterogeneity allows for multitemporal studies focused on a wide range of applications. However, it also poses a set of issues related mostly with the big data domain. With the aim of increasing the accessibility of imagery to the widest range of users, several initiatives have been developed both at the public and private spheres. Among these solutions we highlight the Open Data Cube (ODC) project, which has been implemented operationally in many countries and regions all over the world due to its open source nature. Most of the datacubes using ODC technology have been conceived for the monitoring of the Sustainable Development Goals. In order to feed this type of infrastructure it is necessary to transform the raw satellite data into the so-called Analysis Ready Data (ARD) by systematically processing them. In this article, a review of the state-of-the-art implementations of ODC for the systematic collection, pre-processing and dissemination of Sentinel imagery is intended, as well as its application to the Iberian Peninsula. In addition, the initial results of the tasks performed will be presented: i) the development of a QGIS plugin allowing, among other uses, the acquisition of Sentinel 1 and 2 imagery in any place of the world and the generation of ARD for certain products, ii) the implementation of an ODC pilot in areas of interest in Spain, and iii) a thorough documentation of the geo-technological environment used, based on FOSS4G (Free and Open Source Software for Geospatial).
Downloads
References
A Sentinel-1 Flood map generation QGIS plugin—NASA/ ADS. (s. f.). Recuperado 7 de septiembre de 2020, de https://ui.adsabs.harvard.edu/abs/2016EGUGA..1814693S/abstract
Baghdadi, N. (2017a). Qgis and applications in territory development. ISTE Ltd/John Wiley and Sons Inc.
Baghdadi, N. (2017b). Qgis and generic tools. ISTE Ltd/ John Wiley and Sons Inc. DOI: https://doi.org/10.1002/9781119457091
Baumann, P. (2017). The Datacube Manifesto. https:// earthserver.eu/tech/datacube-manifesto/
Baumann, P., Mazzetti, P., Ungar, J., Barbera, R., Barboni, D., Beccati, A., Bigagli, L., Boldrini, E., Bruno, R., Calanducci, A., Campalani, P., Clements, O., Dumitru, A., Grant, M., Herzig, P., Kakaletris, G., Laxton, J., Koltsida, P., Lipskoch, K., … Wagner, S. (2016). Big Data Analytics for Earth Sciences: The EarthServer approach. International Journal of Digital Earth, 9(1), 3-29. https:// doi.org/10.1080/17538947.2014.1003106 DOI: https://doi.org/10.1080/17538947.2014.1003106
CEOS Analysis Ready Data. (s. f.). Recuperado 3 de septiembre de 2020, de http://ceos.org/ard/
Chatenoux, B., Richard, J.-P., Poussin, C., Guigoz, Y., & Giuliani, G. (2019). Bringing Open Data Cube into Practice—Workshop Material. https://doi. org/10.13140/RG.2.2.17703.91044
Congedo, L. (2016). Semi-Automatic Classification Plugin Documentation. Release 6.0.1.1. https://doi. org/10.13140/RG.2.2.29474.02242/1
Filipponi, F. (2019). Sentinel-1 GRD Preprocessing Workflow. Proceedings, 18(1), 11. https://doi. org/10.3390/ECRS-3-06201 DOI: https://doi.org/10.3390/ECRS-3-06201
Frantz, D. (2019). FORCE—Landsat + Sentinel-2 Analysis Ready Data and Beyond. Remote Sensing, 11(9), 1124. https://doi.org/10.3390/rs11091124 DOI: https://doi.org/10.3390/rs11091124
Github Open Data Cube. (s. f.). GitHub. Recuperado 4 de septiembre de 2020, de https://github.com/ opendatacube
Giuliani, G., Chatenoux, B., Bono, A. D., Rodila, D., Richard, J.-P., Allenbach, K., Dao, H., & Peduzzi, P. (2017). Building an Earth Observations Data Cube: Lessons learned from the Swiss Data Cube (SDC) on generating Analysis Ready Data (ARD). Big Earth Data, 1(1-2), 100-117. https://doi.org/10.1080/20964471.2017.1398903 DOI: https://doi.org/10.1080/20964471.2017.1398903
Giuliani, G., Chatenoux, B., Piller, T., Moser, F., & Lacroix, P. (2020). Data Cube on Demand (DCoD): Generating an earth observation Data Cube anywhere in the world. International Journal of Applied Earth Observation and Geoinformation, 87, 102035. https:// doi.org/10.1016/j.jag.2019.102035 DOI: https://doi.org/10.1016/j.jag.2019.102035
Giuliani, G., Masó, J., Mazzetti, P., Nativi, S., & Zabala, A. (2019). Paving the Way to Increased Interoperability of Earth Observations Data Cubes. Data, 4(3), 113. https://doi.org/10.3390/data4030113 DOI: https://doi.org/10.3390/data4030113
Gomes, V. C. F., Queiroz, G. R., & Ferreira, K. R. (2020). An Overview of Platforms for Big Earth Observation Data Management and Analysis. Remote Sensing, 12(8), 1253. https://doi.org/10.3390/rs12081253 DOI: https://doi.org/10.3390/rs12081253
Khan, S. (2018). Empirical Evaluation of Open Source QGIS with Contemporary Proprietary GIS Systems—A Study. JMDET - Journal of Multi Disciplinary Engineering Technologies. https://www.academia. edu/38214128/Empirical_Evaluation_of_Open_ Source_QGIS_with_Contemporary_Proprietary_ GIS_Systems_A_Study
Khan, S., & Mohiuddin, K. (2018). Evaluating the parameters of ArcGIS and QGIS for GIS Applications. ResearchGate. https://www.researchgate.net/ publication/330601009_Evaluating_the_parameters_of_ArcGIS_and_QGIS_for_GIS_Applications
Maso, J., Zabala, A., Serral, I., & Pons, X. (2019). A Portal Offering Standard Visualization and Analysis on top of an Open Data Cube for Sub-National Regions: The Catalan Data Cube Example. Data, 4(3), 96. https://doi.org/10.3390/data4030096 DOI: https://doi.org/10.3390/data4030096
Navacchi, C., Bauer-Marschallinger, B., & Wagner, W. (2020). Flood Monitoring using ACube—An Austrian Data Cube Solution. 22, 21575. DOI: https://doi.org/10.5194/egusphere-egu2020-21575
Open Data Cube | Open Source. (s. f.). Open Data Cube. Recuperado 17 de abril de 2020, de https://www opendatacube.org
Ortega Terol, D. (2018). Innovación en el desarrollo de herramientas basadas en software libre para la explotación de imágenes aéreas y espaciales adquiridas con sensores de última generación [Universidad de Salamanca. Escuela Politécnica Superior de Ávila]. https://gredos.usal.es/handle/10366/139722
Picoli, M., Simoes, R., Chaves, M., Santos, L., Ipia, A., Soares, A., Sanches, I., Ferreira, K., & Queiroz, G. (2020). CBERS DATA CUBE: A powerfull technology for mapping and monitoring Brazilian biomes. En ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences: Vol. V-3- 2020 (p. 539). https://doi.org/10.5194/isprs-annals-V-3-2020-533-2020 DOI: https://doi.org/10.5194/isprs-annals-V-3-2020-533-2020
Piedelobo, L., Ortega-Terol, D., Del Pozo, S., Hernández-López, D., Ballesteros, R., Moreno, M. A., Molina, J.-L., & González-Aguilera, D. (2018). HidroMap: A New Tool for Irrigation Monitoring and Management Using Free Satellite Imagery. ISPRS International Journal of Geo-Information, 7(6), 220. https:// doi.org/10.3390/ijgi7060220 DOI: https://doi.org/10.3390/ijgi7060220
Purss, M. B. J., Lewis, A., Oliver, S., Ip, A., Sixsmith, J., Evans, B., Edberg, R., Frankish, G., Hurst, L., & Chan, T. (2015). Unlocking the Australian Landsat Ar chive – From dark data to High Performance Data infrastructures. GeoResJ, 6, 135-140. https://doi. org/10.1016/j.grj.2015.02.010 DOI: https://doi.org/10.1016/j.grj.2015.02.010
QGIS and Applications in Agriculture and Forest | Wiley. (s. f.). Wiley.Com. Recuperado 9 de septiembre de 2020, de https://www.wiley.com/en-us/ QGIS+and+Applications+in+Agriculture+and+- Forest-p-9781786301888
Qgis and applications in water and risks. (2017). ISTE Ltd / John Wiley and Sons Inc.
Sansare, D. A., & Mhaske, S. Y. (2020). Natural hazard assessment and mapping using remote sensing and QGIS tools for Mumbai city, India. Natural Hazards, 100(3), 1117-1136. https://doi.org/10.1007/ s11069-019-03852-5 DOI: https://doi.org/10.1007/s11069-019-03852-5
Ticehurst, C., Zhou, Z.-S., Lehmann, E., Yuan, F., Thankappan, M., Rosenqvist, A., Lewis, B., & Paget, M. (2019). Building a SAR-Enabled Data Cube Capability in Australia Using SAR Analysis Ready Data. Data, 4(3), 100. https://doi.org/10.3390/ data4030100 DOI: https://doi.org/10.3390/data4030100
Truckenbrodt, J., Freemantle, T., Williams, C., Jones, T., Small, D., Dubois, C., Thiel, C., Rossi, C., Syriou, A., & Giuliani, G. (2019). Towards Sentinel-1 SAR Analysis-Ready Data: A Best Practices Assessment on Preparing Backscatter Data for the Cube. Data, 4(3), 93. https://doi.org/10.3390/data4030093 DOI: https://doi.org/10.3390/data4030093
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.