Calidad Funcional: un nuevo enfoque sobre la calidad de datos

Authors

  • Francisco Javier Ariza López Departamento de Ingeniería Cartográfica, Geodésica y Fotogrametría, Universidad de Jaén
  • Juan Francisco Reinoso Gordo Departamento de Expresión Gráfica Arquitectónica y en la Ingeniería, Universidad de Granada
  • José Luis García Balboa Departamento de Ingeniería Cartográfica, Geodésica y Fotogrametría, Universidad de Jaén
  • Antonio F. Rodríguez Pascual Centro Nacional de Información Geográfica de España

DOI:

https://doi.org/10.59192/mapping.420

Keywords:

Data quality, Fitness for use, ISO 19157, Quality evaluation, Functional quality

Abstract

This paper reflects on the quality of geospatial data and how the current data-centric paradigm can be overcome by considering
generic use cases thank link geospatial data with its processing (algorithms). In this way, a new approach to the quality of geospatial
data is proposed that assumes an intermediate situation between the data-centric extreme, adopted to date by the producers as the
only viable perspective, and the user-centric extreme of the users, which is probably unapproachable. As an appreciation of quality in the middle of these extremes, the functional quality is proposed and defined and some guidelines are offered to address it.

Downloads

Download data is not yet available.

Author Biographies

Francisco Javier Ariza López, Departamento de Ingeniería Cartográfica, Geodésica y Fotogrametría, Universidad de Jaén

Desde 1994 ha impartido asignaturas relacionadas con la topografía, la producción cartográfica, la reproducción de mapas, los sistemas de información geográfica, las infraestructuras de datos  espaciales, el desarrollo de aplicaciones SIG e IoT, etc. Sus líneas de investigación abarcan la calidad de datos y procesos, la generalización cartográfica y las aplicaciones de los SIG y la teledetección al medio ambiente. Es autor de más de cien artículos, de cuatro libros en la temática de la calidad de datos geoespaciales, de varias normas y guías sobre calidad de datos. Ha dirigido más de cien trabajos tutelados de alumnos y trece tesis doctorales centradas en el ámbito geoespacial. Ha dirigido varios proyectos de investigación del Plan Nacional, así como numerosos proyectos con empresas y administraciones nacionales e internacionales en el campo de la geomática.

Juan Francisco Reinoso Gordo, Departamento de Expresión Gráfica Arquitectónica y en la Ingeniería, Universidad de Granada

Doctor en Ingeniería Cartográfica, Geodésica y Fotogrametría, actualmente es Profesor Titular de Universidad en el Departamento de Expresión Gráfica, Arquitectónica y en la Ingeniería de la Universidad de Granada, impartiendo clase en las titulaciones de Grado en Ingeniería Civil y Grado en estudios de Arquitectura. Previamente trabajó en empresa constructora, en el Centro Cartográfico y Fotográfico del Ejército del Aire y fue profesor en la Universidad de Jaén. Ha realizado estancias internacionales en las Universidades de California, Davis (EEUU) y Federale do Paraná (Brasil). Ha sido investigador principal en varios proyectos de investigación relacionados con la calidad BIM y con la calidad funcional de modelos digitales de elevaciones. También ha investigado sobre la documentación digital del Patrimonio mediante técnicas fotogramétricas y escáner láser. Es miembro del Grupo de Investigación Ingeniería Cartográfica (TEP164) y del laboratorio Survey and Modelling Lab (SMLAB).

José Luis García Balboa, Departamento de Ingeniería Cartográfica, Geodésica y Fotogrametría, Universidad de Jaén

Ingeniero Ténico en Topografía (1997), Ingeniero en Geodesia y Cartografía (1998) y Doctor por la Universidad de Jaén (2006). Profesor del Departamento de Ingeniería Cartográfica, Geodésica y Fotogrametría de la Universidad de Jaén desde 1999, ha impartido asignaturas relacionadas con la topografía, la producción cartográfica, las infraestructuras de datos espaciales y la teledetección en diversos títulos de grado, máster y doctorado. Ha sido coordinador del Máster propio en Evaluación y Gestión de la Calidad de la Información Geográfica. Miembro del Grupo de Investigación Ingeniería Cartográfica (TEP164), sus áreas de investigación se centran en la calidad de la información geográfica, la generalización cartográfica y la incertidumbre de medida en la instrumentación topográfica, siendo autor de diversas publicaciones internacionales con índice de impacto. Colabora con entidades de normalización, participando activamente en la elaboración y traducción de normas y guías sobre calidad de datos.

Antonio F. Rodríguez Pascual, Centro Nacional de Información Geográfica de España

Licenciado en Ciencias Físicas por la Universidad Complutense de Madrid, ingresó como Ingeniero Geógrafo en el IGN en el año 1986 por oposición y en el Cuerpo Superior de Sistemas y Tecnologías de la Información en 1993 por concurso. Ha sido subdirector del Centro Nacional de Información Geográfica (CNIG), secretario y presidente del UNE/CTN 148 «Información geográfica digital» y Profesor Asociado en la UPM durante 16 años. Tiene experiencia en Cartografía Asistida por Ordenador, MDT, Bases de Datos, SIG, Modelado, Calidad, Metadatos, Normalización, IDE, servicios web y datos abiertos.

References

alphaBeta (2017). the economic impact of geospatial services: how consumers, businesses and society benefit from location-based information. https://alphabeta.com/wp-content/uploads/2017/09/GeoSpatial-Report_Sept-2017.pdf [19/11/2021]

Ariza-López FJ, Chicaiza Mora EG, Mesa Mingorance JL, Jianhong Cai, Reinoso Gordo JF (2018). ADEMs: An Approach to Users and Uses from the Quality Perspective. International Journal of Spatial Data Infrastructures Research, 2018, Vol.13, 131-171 Special Section: INSPIRE (Full Research Article).

Ariza-López FJ, Reinoso-Gordo JF, García-Balboa JL, Ariza-López IA (2022). Quality specification and control of a point cloud from a TLS survey using the ISO 19157 framework, the Ariza Bridge case. Pendiente de publicación. DOI: https://doi.org/10.1016/j.autcon.2022.104353

Ariza-López, FJ (2002). Calidad en la Producción Cartográfica. Editorial Ra-Ma, Madrid.

Batini, C., Scannapieco, M. (2016). Data and information quality. Dimensions, Principles and techniques. Springer. DOI: https://doi.org/10.1007/978-3-319-24106-7

Bauer, J., Rohdenburg, H., Bork, H.-R. (1985). En Digitales Reliefmodell als Vorraussetzung fuer ein deterministisches Modell der Wasser und Stoff-Fluesse, Landschaftsgenese und Landschaftsoekologie, H.10, Parameteraufbereitung fuer deterministische Gebiets-Wassermodelle, Grundlagenarbeiten zu Analyse von Agrar-Oekosystemen, (Eds.: Bork, H.-R. / Rohdenburg, H.), p.1-15

Beard M.K., “Use error: the neglected error component”, Proc. Auto-Carto 9, 1989, Baltimore, USA, ACSM-ASPRS, p 808417.

Boin A.T., Hunter G.J. (2009). What communicates Quality to the spatial Data Consumer?. En Stein A, Shi W, Bijker W (2009). Quality aspects in Spatial Data Mining. CRC Press. DOI: https://doi.org/10.1201/9781420069273.sec5

Darnell, A.R. N.J. Tate and C. Brunsdon (2008). Improving user assessment of error implications in digital elevation models. Computers, Environment and Urban Systems, 32 (4):268-277. DOI: https://doi.org/10.1016/j.compenvurbsys.2008.02.003

De Bièvre, Paul. (2010). ‘Fitness-for-intended-use’ is an important concept in measurement. Accreditation and Quality Assurance 15, 545–546. 10.1007/s00769-010-0696-3. DOI: https://doi.org/10.1007/s00769-010-0696-3

Devillers, R., Beard K (2006). Comunication and use of spatial data quality information in GIS. En Devillers, R. y Jeansoulin, R. (Ed). Fundamental of Spatial Data quality. GIS Series ISTE. DOI: https://doi.org/10.1002/9780470612156

Devillers, R., Gervais, M., Bédard, Y. and R. Jeansoulin (2002), “Spatial Data Quality: From Metadata to Quality Indicators and Contextual End-User Manual”. Proceedings of OEEPE/ISPRS Joint Workshop on Spatial Data Quality Management, March 21-22, 2002, Istanbul. pp. 45–55

Devillers, R., Yvan, B., Jeansoulin, R. (2005). Multidimensional Management of Geospatial Data Quality Information for its Dynamic Use Within GIS. American Society for Photogrammetry and Remote Sensing (PE&RS). 71. 205-215. 10.14358/PERS.71.2.205. DOI: https://doi.org/10.14358/PERS.71.2.205

DGT (2020): Nuevas mediciones, consumos más reales. https://revista.dgt.es/es/motor/reportajes/2020/1217-WLTP.shtml [accedido 18/11/2021]

Dunn M., Hickey R. (1998) The effect of slope algorithms on slope estimates within a GIS, Cartography, 27:1, 9-15, DOI: 10.1080/00690805.1998.9714086 DOI: https://doi.org/10.1080/00690805.1998.9714086

English, L. (1999). Improving data warehouse and business information quality. New York: Wiley.

EU (2007). Regulation (EC) No 715/2007 of the European Parliament and of the Council of 20 June 2007 on type-approval of motor vehicles with respect to emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and on access to vehicle repair and maintenance information [Official Journal L 171, 29.6.2007]

EU (2017). Commission Regulation (EU) 2017/1347 of 13 July 2017 correcting Directive 2007/46/EC of the European Parliament and of the Council, Commission Regulation (EU) No 582/2011 and Commission Regulation (EU) 2017/1151 supplementing Regulation (EC) No 715/2007 of the European Parliament and of the Council on type-approval of motor vehicles with respect to emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and on access to vehicle repair and maintenance information, amending Directive 2007/46/EC of the European Parliament and of the Council, Commission Regulation (EC) No 692/2008 and Commission Regulation (EU) No 1230/2012 and repealing Regulation (EC) No 692/2008

Fairfield, J., Leymarie, P. (1991). Drainage networks from grid digital elevation models', Water Resources Research, 27:709-717 DOI: https://doi.org/10.1029/90WR02658

FGDC (1998). FGDC-STD-007.3-1998. The National Standard for Spatial Data Accuracy (NSSDA). Federal Geographic Data Committee.

Fisher, P.F. and N.J. Tate (2006). Causes and Consequences of Error in Digital Elevation Models. Progress in Physical Geography, 30, 467-489. DOI: https://doi.org/10.1191/0309133306pp492ra

Fleming, M. D., and R. M. Hoffer. 1979. Machine processing of Landsat MSS data and DMA topographic data for forest cover type mapping. LARS Technical Report 062879. Laboratory for Applications of Remote Sensing, Purdue University, West Lafayette, Indiana, USA

Freeman, G.T. (1991). Calculating catchment area with divergent flow based on a regular grid, Computers and Geosciences, 17:413-22 DOI: https://doi.org/10.1016/0098-3004(91)90048-I

Guth, P.L., 1995, Slope and aspect calculations on gridded digital elevation models: Examples from a geomorphometric toolbox for personal computers: Zeitschrift fur Geomorphologie N.F. Supplementband 101:31-52.

Hickey R. (2000) Slope Angle and Slope Length Solutions for GIS, Cartography, 29:1, 1-8, DOI: 10.1080/00690805.2000.9714334 DOI: https://doi.org/10.1080/00690805.2000.9714334

Horn, B. K. P. 1981. Hill shading and the reflectance map. Proceedings of the IEEE 69(1): 14-47. DOI: https://doi.org/10.1109/PROC.1981.11918

Hutchinson MF. 1989. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology 106: 211– 232. DOI: https://doi.org/10.1016/0022-1694(89)90073-5

Hutchinson, M. F., J. L. Stein, J. C. Gallant, and T. I. Dowling 2013. “New Methods for Incorporating and Analyzing Drainage Structure in Digital Elevation Models.” In Proceedings of the 3rd International Conference on Geomorphometry. Nanjing, China. Available at http://geomorphometry.org/Hutchinson2013

ICSM (2008). ICSM Guidelines for Digital Elevation Data v.1. Intergovernmental Committee on Surveying and Mapping (ICSM). http://www.icsm.gov.au/elevation/ICSM-GuidelinesDigitalElevationDataV1.pdf

Illari P. (2014) IQ: Purpose and Dimensions. In: Floridi L., Illari P. (eds) The Philosophy of Information Quality. Synthese Library (Studies in Epistemology, Logic, Methodology, and Philosophy of Science), vol 358. Springer, Cham. https://doi.org/10.1007/978-3-319-07121-3_14 DOI: https://doi.org/10.1007/978-3-319-07121-3_14

Indecon (2014). Assessment of the Economic Value of the Geospatial Information Industry in Ireland. https://osi.ie/wp-content/uploads/2016/02/Economic-Value-of-the-Geospatial-Information.pdf [19/11/2021]

ISO (2013). ISO 19157:2013 Geographic information — Data quality

ISO (2015). ISO 9001:2015 Quality management systems — Requirements

ISO (2016). ISO 8000-61:2016. Data quality — Part 61: Data quality management: Process reference model.

ISO (2020). ISO 8000-2:2020 Data quality — Part 2: Vocabulary

ISO, IEC (2008). ISO/IEC 25012:2008 Software engineering — Software product Quality Requirements and Evaluation (SQuaRE) — Data quality model

Jankowfsky S., Branger F., Braud I, Gironas J, Rodriguez F (2013). Comparison of catchment and network delineation approaches in complex suburban environments. Application to the Chau- danne catchment, France. Hydrological Processes, Wiley, 27(25), p. 3747 - p. 3761. 10.1002/hyp.9506. DOI: https://doi.org/10.1002/hyp.9506

Jenson, S. K, and J O. Dominque. 1988. Extracting topographic structure from digital elevation model data for geographic information system analysis. Photogrammetic Engineering and Remote Sensing. 54 (11): 1593-600.

Lee, Y. W., Strong, D. M., Kahn, B. K., & Wang, R. Y. (2002). AIMQ: A methodology for information quality assessment. Information & Management, 40(2), 133–146. doi: 10.1016/s0378-7206(02)00043-5. DOI: https://doi.org/10.1016/S0378-7206(02)00043-5

Lemmens, M.J.P.M. (1999). Uncertainty in automatically sampled digital elevation models. In Lowell, K., Jaton A. (Ed). Spatial accuracy assessment: Land information uncertainty in natural resources. Sleeping bear Press, Inc. pp. 339-407.

Martz, L. W., and J. Garbrecht. 1998. “The Treatment of Flat Areas and Depressions in Automated Drainage Analysis of Raster Digital Elevation Models.” Hydrological Processes 12: 843–855. doi:10.1002/(ISSN)1099-1085 DOI: https://doi.org/10.1002/(SICI)1099-1085(199805)12:6<843::AID-HYP658>3.0.CO;2-R

Mathur, P. 1989. Calculation of slope angles from DEM. Cartography Specialty Group Student Papers. pp. 15-27.

Matthew E. Baker, Donald E. Weller, and Thomas E. Jordan (2006) Comparison of Automated Watershed Delineations: Effects on Land Cover Areas, Percentages, and Relationships to Nutrient Discharge PE&RS DOI: https://doi.org/10.14358/PERS.72.2.159

McGilvray, D. (2008). Executing Data Quality Projects. Ten Steps to Quality data and trusted Information. Morgan Kaufmann.

Mesa-Mingorance JL., Ariza-López FJ (2020). Accuracy Assessment of Digital Elevation Models (DEMs): A Critical Review of Practices of the Past Three Decades Remote Sensing 12, no. 16: 2630. https://doi.org/10.3390/rs12162630 DOI: https://doi.org/10.3390/rs12162630

Mesa-Mingorance, J.L.; Chicaiza-Mora, E.G.; Buenaño, X.; Cai, J.; Rodríguez-Pascual, A.F.; Ariza-López, F.J. Analysis of Users and Uses of DEMs in Spain. Int. J. Geo-Inf. 2017, 6, 406 DOI: https://doi.org/10.3390/ijgi6120406

Michael E. Hodgson (1998) Comparison of Angles from Surface Slope/Aspect Algorithms, Cartography and Geographic Information Systems, 25:3, 173-185, DOI: 10.1559/152304098782383106 DOI: https://doi.org/10.1559/152304098782383106

O'Callaghan, J.F., Mark, D.M. (1984). 'The extraction of drainage networks from digital elevation data', Computer Vision, Graphics and Image Processing, 28:323-344 DOI: https://doi.org/10.1016/S0734-189X(84)80011-0

Olson, J. (2003). Data Quality: The Accuracy Dimension. Morgan Kaufmann Publishers.

OS (2013). OS TERRAIN 5 User guide and technical specification. Ordnance Suevey, UK.

Oxera (2013). What is the economic impact of Geo services? https://www.oxera.com/wp-content/uploads/2018/03/What-is-the-economic-impact-of-Geo-services_1-1.pdf [19/11/2021]

Planchon, O., and F. Darboux. 2002. “A Fast, Simple and Versatile Algorithm to Fill the Depressions of Digital Elevation Models.” Catena 46: 159–176. doi:10.1016/s0341-8162(01)00164-3. DOI: https://doi.org/10.1016/S0341-8162(01)00164-3

Podobnikar T. (2009). Methods for visual quality assessment of a digital terrain model. SAPIENS. 2(2):1-10. https://sapiens.revues.org/738 [accessed 26 October 2017].

Redman, T.C. (2013). Data Quality Management Past, Present and Future. En Sadiq, S. (Ed.) Handbook of Data Quality. Research and Practice. Springer. DOI: https://doi.org/10.1007/978-3-642-36257-6_2

Reinoso-Gordo, J.F. (2020). Casos de uso. En proyecto: “Calidad funcional de modelos digitales de elevaciones del terreno en ingeniería”, Programa Estatal, Ministerio de Ciencia, Innovación y Universidades, Convocatoria 2019.

Romero-Zaliz R., Reinoso-Gordo J. (2018) An Updated Review on Watershed Algorithms. In: Cruz Corona C. (eds) Soft Computing for Sustainability Science. Studies in Fuzziness and Soft Computing, vol 358. Springer, Cham. https://doi.org/10.1007/978-3-319-62359-7_12 DOI: https://doi.org/10.1007/978-3-319-62359-7_12

Seibert, J., McGlynn, B. (2007). 'A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models', Water Resources Research, Vol. 43, W04501 DOI: https://doi.org/10.1029/2006WR005128

Sharpnack, D. A, and G. Akin. 1969. An algorithm for computing slope and aspect from elevations. Photogrammetic Engineering 35(3): 247-8.

Spatineo, GIS-kvalitet i Norden (2019). The economic benefits of geodata in digital urban planning and building process in Sweden. [19/11/2021]

Tang J., & P. Pilesjö (2011). Estimating slope from raster data: a test of eight different algorithms in flat, undulating and steep terrain. In River Basin management VI 143. doi: 10.2495/RM110131

Tang J., Pilesjö P. (2011). Estimating slope from raster data: a test of eight different algorithms in flat, undulating and steep terrain. En River basin management. DOI: https://doi.org/10.2495/RM110131

Tarboton, D.G. (1997. 'A new method for the determination of flow directions and upslope areas in grid digital elevation models', Water Resources Research, Vol.33, No.2, p.309-319 DOI: https://doi.org/10.1029/96WR03137

Tarquini, S., and L. Nannipieri (2017). The 10 m-resolution TINITALY DEM as a trans-disciplinary basis for the analysis of the Italian territory: Current trends and new perspectives. Geomorphology 281:108-115. DOI: https://doi.org/10.1016/j.geomorph.2016.12.022

The Economist (2017). The world’s most valuable resource is no longer oil, but data. https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data

Vasseur, B., Jeansoulin, R., Devillers, R., Frank, A. (2006). External quality evaluation of geographical applications: an ontological approach. En Devillers, R. y Jeansoulin, R. (Ed). Fundamental of Spatial Data quality. GIS Series ISTE. DOI: https://doi.org/10.1002/9780470612156.ch13

Veregin, H. (1999). Data quality parameters. En P.A. Goodchild MF Maguire DJ Rhind DW (Ed) Geographical Information Systems Longley, NY, John Wiley & Sons.

Wechsler, S.P. Perceptions of Digital Elevation Model Uncertainty by DEM Users. URISA J. 2003, 15, 57–64

Published

2024-03-10

How to Cite

Ariza López, F. J., Reinoso Gordo, J. F., García Balboa, J. L., & Rodríguez Pascual, A. F. (2024). Calidad Funcional: un nuevo enfoque sobre la calidad de datos. REVISTA INTERNACIONAL MAPPING, 31(207), 04–14. https://doi.org/10.59192/mapping.420

Issue

Section

Artículos Científicos