Detection and delineation of water bodies in high-resolution satellite images with deep learning
A preliminary study with Detectron2
DOI:
https://doi.org/10.59192/mapping.442Keywords:
Image Segmentation, Satellite Images, Detectron2, Bodies of water, Deep Learning, Water Recources, Computer vision, Machine LearningAbstract
Thesegmentationof water bodies through satellite imagery plays a crucial role invarious applications, including environmental monitoring, water resource planning,defence against fires, and climate change analysis.In this articleaimsto explore theapplication of deep learning based on the Detectron2 framework for the automaticgeneration of polygons representing water bodiessuch as small reservoirs, lakes,ponds, and reservoirs.Efficient characterization of water resources insmallreservoirs,and damsallows a better and moreeffective monitoring of Water Plans (PA) and theproper management of these resources.The geographical area of study and thedeveloped methodologies are situated within the jurisdictions of theAdministração daRegião Hidrográficado Alentejo,decentralized departments of the AgênciaPortuguesado Ambiente, I.P..A comprehensive and customized dataset was developed, consisting of high-resolutionsatellite imageswithmanually annotated labels identifying areas corresponding towaterbodies,usedformodel training.The ResNet-50 architecturewascombined withMask R-CNNavailable in Detectron2, to perform the task of object detection in generaland segmentation respectively.Subsequently, we trained the deep learning modelusing our dataset on the Google Colab platform, leveraging the computational powerof Graphics Processing Units (GPUs).The advantage of employing the Detectron2 framework lies in its swift and efficientcapacity for of waterbodies segmentationwithin extensive datasets, in contrast to theconventional approachwhich involves the analysis and marking of polygons in satelliteimages by specialized personnel,incurring substantial costs in terms of humanresources and economic resources while also being notably time-consuming.Two water bodies segmented using the proposed procedurecan be observed in(Figure-1).This approach has the potential to drive the development of more preciseand efficient techniques for thedetectionandsegmentationof hydrological featuresin satellite images, as it allows the segmentation of water bodies with dimensions assmall as 121 m².The methodology implemented in this work can be applied to otherthematic areas, such as fire detection, algae blooms, identification of urban structures, delineation of forests, and agricultural crop mapping.
Downloads
References
H. Xia, J. Zhao, Y. Qin, J. Yang, Y. Cui, H. Song, L. Ma, N. Jin, Q. Meng, Changes in Water Surface Area during 1989–2017 in the Huai River Basin using Landsat Data and Google Earth Engine, Remote Sens. 2019, Vol. 11, Page 1824. 11 (2019) 1824. https://doi.org/10.3390/RS11151824. DOI: https://doi.org/10.3390/rs11151824
D. Yang, Y. Yang, J. Xia, Hydrological cycle and water resources in a changing world: A review, Geogr. Sustain. 2 (2021) 115–122. https://doi.org/10.1016/J.GEOSUS. 2021.05.003. DOI: https://doi.org/10.1016/j.geosus.2021.05.003
A. El Moll, Water resources and climate change: regional, national and international perspective, Sustain. Circ. Manag. Resour. Waste Towar. a Green Deal. (2023) 309–336. https://doi.org/10.1016/B978-0-323-95278-1.00010-3. DOI: https://doi.org/10.1016/B978-0-323-95278-1.00010-3
M. Yadav, H.G. Gosai, G. Singh, A. Singh, A.K. Singh, R.P. Singh, R.N. Jadeja, Major impact of global climate change in atmospheric, hydrospheric and lithospheric context, Glob. Clim. Chang. Environ. Refug. Nature, Framew. Leg. (2023) 35–55. https://doi.org/10.1007/978- DOI: https://doi.org/10.1007/978-3-031-24833-7_3
-031-24833-7_3/COVER.
J.J. Bogardi, B.M. Fekete, Water: A unique phenomenon and resource, Handb. Water Resour. Manag. Discourses, Concepts Examples. (2021) 9–40. https://doi. org/10.1007/978-3-030-60147-8_2/COVER. DOI: https://doi.org/10.1007/978-3-030-60147-8_2
F. Papa, F. Frappart, Surface Water Storage in Rivers and Wetlands Derived from Satellite Observations: A Review of Current Advances and Future Opportunities for Hydrological Sciences, Remote Sens. 2021, Vol. 13, Page 4162. 13 (2021) 4162. https://doi.org/10.3390/RS13204162. DOI: https://doi.org/10.3390/rs13204162
W. Dorigo, S. Dietrich, F. Aires, L. Brocca, S. Carter, J.F. Cretaux, D. Dunkerley, H. Enomoto, R. Forsberg, A. Guntner, M.I. Hegglin, R. Hollmann, D.F. Hurst, J.A. Johannessen, C. Kummerow, T. Lee, K. Luojus, U. Looser, D.G. Miralles, V. Pellet, T. Recknagel, C.R. Vargas, U. Schneider, P. Schoeneich, M. Schroder, N. Tapper, V. Vuglinsky, W. Wagner, L. Yu, L. Zappa, M. Zemp, V. Aich, Closing the Water Cycle from Observations across Scales: Where Do We Stand?, Bull. Am. Meteorol. Soc. 102 (2021) E1897–E1935. https://doi.org/10.1175/BAMS-D-19-0316.1. DOI: https://doi.org/10.1175/BAMS-D-19-0316.1
G.L. Kyriakopoulos, Circular economy and sustainable strategies: Theoretical framework, policies and regulation challenges, barriers, and enablers for water management, Water Manag. Circ. Econ. (2023) 197–230. https://doi.org/10.1016/B978-0-323-95280-4.00014-X. DOI: https://doi.org/10.1016/B978-0-323-95280-4.00014-X
C. Faye, A.A. Sow, S. Dieye, Water management policy for freshwater security in the context of climate change in Senegal, Clim. Chang. Water Resour. Africa Perspect. Solut. Towar. an Imminent Water Cris. (2021) 255–276. https://doi.org/10.1007/978-3-030-61225-2_12/COVER. DOI: https://doi.org/10.1007/978-3-030-61225-2_12
P.H. Gleick, H. Cooley, Freshwater Scarcity, Https://Doi. Org/10.1146/Annurev-Environ-012220-101319. 46 (2021) 319–348. https://doi.org/10.1146/ANNUREV-ENVIRON-012220-101319. DOI: https://doi.org/10.1146/annurev-environ-012220-101319
J. Rocha, C. Carvalho-Santos, P. Diogo, P. Beca, J.J. Keizer, J.P. Nunes, Impacts of climate change on reservoir water availability, quality and irrigation needs in a water scarce Mediterranean region (southern Portugal), Sci. Total Environ. 736 (2020) 139477. https://doi. org/10.1016/J.SCITOTENV.2020.139477. DOI: https://doi.org/10.1016/j.scitotenv.2020.139477
P.M.M. Soares, D.C.A. Lima, Water scarcity down to earth Surface in a Mediterranean climate: The extreme future of soil moisture in Portugal, J. Hydrol. 615 (2022) 128731. https://doi.org/10.1016/J.JHYDROL.2022.128731. [13] S. Lu, B. Wu, N. Yan, H. Wang, Water body mapping method with HJ-1A/B satellite imagery, Int. J. Appl. Earth Obs. Geoinf. 13 (2011) 428–434. https://doi.org/10.1016/J.JAG.2010.09.006. DOI: https://doi.org/10.1016/j.jhydrol.2022.128731
W. Jiang, Y. Ni, Z. Pang, X. Li, H. Ju, G. He, J. Lv, K. Yang, J. Fu, X. Qin, An Effective Water Body Extraction Method with New Water Index for Sentinel-2 Imagery, Water 2021, Vol. 13, Page 1647. 13 (2021) 1647. https://doi. org/10.3390/W13121647. DOI: https://doi.org/10.3390/w13121647
X. Yang, Q. Qin, P. Grussenmeyer, M. Koehl, Urban Surface water body detection with suppressed built-up noise based on water indices from Sentinel-2 MSI imagery, Remote Sens. Environ. 219 (2018) 259–270. https://doi. org/10.1016/J.RSE.2018.09.016. DOI: https://doi.org/10.1016/j.rse.2018.09.016
S. Ghosh, A. Pal, S. Jaiswal, K.C. Santosh, N. Das, M. Nasipuri, SegFast-V2: Semantic image segmentation with les parameters in deep learning for autonomous driving, Int. J. Mach. Learn. Cybern. 10 (2019) 3145–3154. https://doi.org/10.1007/s13042-019-01005-5. DOI: https://doi.org/10.1007/s13042-019-01005-5
I. Papadeas, L. Tsochatzidis, A. Amanatiadis, I. Pratikakis, Real-Time Semantic Image Segmentation with Deep Learning for Autonomous Driving: A Survey, Appl. Sci. 2021, Vol. 11, Page 8802. 11 (2021) 8802. https://doi.org/10.3390/APP11198802. DOI: https://doi.org/10.3390/app11198802
X. Liu, L. Song, S. Liu, Y. Zhang, A Review of Deep-Learning-Based Medical Image Segmentation Methods, Sustain. 2021, Vol. 13, Page 1224. 13 (2021) 1224. https://doi.org/10.3390/SU13031224. DOI: https://doi.org/10.3390/su13031224
M.R. Ibrahim, J. Haworth, T. Cheng, Understanding cities with machine eyes: A review of deep computer visión in urban analytics, Cities. 96 (2020) 102481. https://doi.org/10.1016/J.CITIES.2019.102481. DOI: https://doi.org/10.1016/j.cities.2019.102481
Y. Lu, D. Chen, E. Olaniyi, Y. Huang, Generative adversarial networks (GANs) for image augmentation in agriculture: A systematic review, Comput. Electron. Agric.200 (2022) 107208. https://doi.org/10.1016/J.COMPAG. 2022.107208. DOI: https://doi.org/10.1016/j.compag.2022.107208
X. Sang, L. Xue, X. Ran, X. Li, J. Liu, Z. Liu, Intelligent High-Resolution Geological Mapping Based on SLICCNN, ISPRS Int. J. Geo-Information 2020, Vol. 9, Page 99. 9 (2020) 99. https://doi.org/10.3390/IJGI9020099. DOI: https://doi.org/10.3390/ijgi9020099
M.E. El-sayed, A.W. Youssef, O.M. Shehata, L.A. Shihata, E. Azab, Computer vision for package tracking on omnidirectional wheeled conveyor: Case study, Eng. Appl. Artif. Intell. 116 (2022) 105438. https://doi.org/10.1016/J.ENGAPPAI.2022.105438. DOI: https://doi.org/10.1016/j.engappai.2022.105438
A. Vembadi, A. Menachery, M.A. Qasaimeh, Cell Cytometry: Review and Perspective on Biotechnological Advances, Front. Bioeng. Biotechnol. 7 (2019) 462391.https://doi.org/10.3389/FBIOE.2019.00147/BIBTEX. DOI: https://doi.org/10.3389/fbioe.2019.00147
H. Farias, D. Ortiz, G. Damke, M. Jaque Arancibia, M. Solar, Mask galaxy: Morphological segmentation of galaxies, Astron. Comput. 33 (2020) 100420. https://doi.org/10.1016/J.ASCOM.2020.100420. DOI: https://doi.org/10.1016/j.ascom.2020.100420
I.J. Kadhim, P. Premaratne, A Novel Deep Learning Framework for Water Body Segmentation from Satellite Images, Arab. J. Sci. Eng. 48 (2023) 10429–10440. https://doi.org/10.1007/S13369-023-07680-5/FIGURES/4. DOI: https://doi.org/10.1007/s13369-023-07680-5
Z. Ma, M. Xia, L. Weng, H. Lin, Local Feature Search Network for Building and Water Segmentation of Remote Sensing Image, Sustain. 2023, Vol. 15, Page 3034. 15 (2023) 3034. https://doi.org/10.3390/SU15043034. DOI: https://doi.org/10.3390/su15043034
K. Yuan, X. Zhuang, G. Schaefer, J. Feng, L. Guan, H. Fang, Deep-Learning-Based Multispectral Satellite Image Segmentation for Water Body Detection, IEEE J. Sel.
Top. Appl. Earth Obs. Remote Sens. 14 (2021) 7422–7434. https://doi.org/10.1109/JSTARS.2021.3098678. DOI: https://doi.org/10.1109/JSTARS.2021.3098678
M. Wieland, S. Martinis, R. Kiefl, V. Gstaiger, Semantic segmentation of water bodies in very high-resolution satellite and aerial images, Remote Sens. Envi-ron. 287 (2023) 113452. https://doi.org/10.1016/J.RSE.2023.113452. DOI: https://doi.org/10.1016/j.rse.2023.113452
R.G. Tambe, S.N. Talbar, S.S. Chavan, Deep multi-feature learning architecture for water body segmentation from satellite images, J. Vis. Commun. Image Represent. 77 (2021) 103141. https://doi.org/10.1016/J.JVCIR.2021.103141. DOI: https://doi.org/10.1016/j.jvcir.2021.103141
GitHub - facebookresearch/detectron2: Detectron2 is a platform for object detection, segmentation and other visual recognition tasks., (n.d.). https://github.com/facebookresearch/detectron2 (accessed August31, 2023).
A.B. Abdusalomov, B.M.S. Islam, R. Nasimov, M. Mukhiddinov, T.K. Whangbo, An Improved Forest Fire Detection Method Based on the Detectron2 Model and a Deep Learning Approach, Sensors 2023, Vol. 23, Page 1512.23 (2023) 1512. https://doi.org/10.3390/S23031512. DOI: https://doi.org/10.3390/s23031512
V. Pham, C. Pham, T. Dang, Road Damage Detection and Classification with Detectron2 and Faster R-CNN, Proc. - 2020 IEEE Int. Conf. Big Data, Big Data 2020. (2020) 5592–5601. https://doi.org/10.1109/BIGDATA50022.2020.9378027. DOI: https://doi.org/10.1109/BigData50022.2020.9378027
R. Divya, J.D. Peter, Smart healthcare system-a brain-like computing approach for analyzing the performance of detectron2 and PoseNet models for anomalous action detection in aged people with movement impairments, Complex Intell. Syst. 8 (2022) 3021–3040. https://doi.org/10.1007/S40747-021-00319-8/FIGURES/21. DOI: https://doi.org/10.1007/s40747-021-00319-8
B. Rai, S.A.S. Kumar, F. Chincholi, H. Koestler, Detectron2 for Lesion Detection in Diabetic Retinopathy, Algorithms 2023, Vol. 16, Page 147. 16 (2023) 147. https://doi.org/10.3390/A16030147. DOI: https://doi.org/10.3390/a16030147
G. Merz, Y. Liu, C.J. Burke, P.D. Aleo, X. Liu, M. Carrasco, V. Kindratenko, Y. Liu, Detection, Instance Segmentation, and Classification for Astronomical Surveys with Deep Learning (DeepDISC): Detectron2 Implementation and Demonstration with Hyper Suprime-Cam Data, MNRAS. 000 (2023) 1–16. https://arxiv.org/abs/2307.05826v1 (accessed September 1, 2023). DOI: https://doi.org/10.1093/mnras/stad2785
.F. Restrepo-Arias, P. Arregoces-Guerra, J.W. Branch-Bedoya Crops Classification in Small Areas Using Unmanned Aerial Vehicles (UAV) and Deep Learning Pre-trained Models from Detectron2, Intell. Syst. Ref. Libr. 226 (2023) 273–291. https://doi.org/10.1007/978-3-031-08246-7_12/COVER. DOI: https://doi.org/10.1007/978-3-031-08246-7_12
Tian, Z. Chu, Q. Hu, L. Ma, Class-Wise Fully Convolutional Network for Semantic Segmentation of Remote Sensing Images, Remote Sens. 2021, Vol. 13, Page 3211. 13 (2021) 3211. https://doi.org/10.3390/RS13163211. DOI: https://doi.org/10.3390/rs13163211
O. Povoa, V. Lopes, A.M. Barata, N. Farinha, Monitoring Genetic Erosion of Aromatic and Medicinal Plant Species in Alentejo (South Portugal), Plants. 12 (2023) 2588. https://doi.org/10.3390/PLANTS12142588/S1. DOI: https://doi.org/10.3390/plants12142588
C. Santos-Silva, R. Louro, Assessment of the diversity of epigeous Basidiomycota under different soil-management systems in a montado ecosystem: a case study conducted in Alentejo, Agrofor. Syst. 90 (2016) 117–126. https://doi.org/10.1007/S10457-015-9800-3/FIGURES/2. DOI: https://doi.org/10.1007/s10457-015-9800-3
I. Pulido-Calvo, J.C. Gutierrez-Estrada, V. Sanz-Fernandez, Drought and Ecological Flows in the Lower Guadiana River Basin (Southwest Iberian Peninsula), Water 2020, Vol. 12, Page 677. 12 (2020) 677. https://doi.org/10.3390/W12030677. DOI: https://doi.org/10.3390/w12030677
A.A. Rodriguez Sousa, C. Tribaldos-Anda, S.A. Prats, C. Brigido, J. Munoz-Rojas, A.J. Rescia, Impacts of Fertilization on Environmental Quality across a Gradient of Olive Grove Management Systems in Alentejo (Portugal), Land. 11 (2022) 2194. ttps://doi.org/10.3390/LAND11122194/S1. DOI: https://doi.org/10.3390/land11122194
SNIRH :: Sistema Nacional de Informacao de Recursos Hidricos, (n.d.). https://snirh.apambiente.pt/ (accessed September 29, 2023).
C. Andrade, J. Contente, J.A. Santos, Climate change projections of dry and wet events in iberia based on the wasp-index, Climate. 9 (2021). https://doi.org/10.3390/cli9060094. DOI: https://doi.org/10.20944/preprints202104.0577.v1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista MAPPING
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.